Каталог Данных Каталог Организаций Каталог Оборудования Каталог Программного Обеспечения Написать письмо Наши координаты Главная страница
RSS Реклама Карта сайта Архив новостей Форумы Опросы 
Здравствуйте! Ваш уровень доступа: Гостевой
Навигатор: Новости/
 
Rus/Eng
Поиск по сайту    
 ГИС-Ассоциация
 Аналитика и обзоры
 Нормы и право
 Конкурсы
 Дискуссии
 Наши авторы
 Публикации
 Календарь
 Биржа труда
 Словарь терминов
Проект поддерживают  


Авторизация    
Логин
Пароль

Забыли пароль?
Проблемы с авторизацией?
Зарегистрироваться




width=1 Rambler_Top100

наша статистика
статистика по mail.ru
статистика по rambler.ru

Реклама на сайте
Новостные ленты

Известия: ученые планируют использовать ИИ для обработки радиолокационных сигналов

На сайте газеты "Известия" опубликована статья Булгакова Д. "Поймать на лету: нейросети в России научат обнаруживать беспилотники". Полностью с материалом можно ознакомиться по ссылке.


В России нейросети научат обрабатывать радиолокационные сигналы — инновацией займутся специалисты Тульского государственного университета (ТулГУ). При этом известно, что исследования будут связаны с работой Центра беспилотных систем Тульской области. Подробности о том, как нейросети могут помочь в борьбе с беспилотниками и какие перспективы есть у таких технологий, читайте в материале «Известий».

О том, что специалисты ТулГУ займутся разработкой инновационных процессов обработки радиолокационных сигналов на основе нейросетей, стало известно в конце мая — об этом сообщила пресс-служба регионального правительства. Там отметили, что власти Тульской области окажут грантовую поддержку университету в этой работе.

— Апробация результатов будет проводиться в условиях ультразвуковой пеленгации на специально созданном полигоне, — рассказали в пресс-службе.

По данным издания «Тульские Известия», по сути, речь идет о том, чтобы научиться эффективно распознавать беспилотные летательные аппараты (БПЛА), причем прежде всего малых размеров.

Между тем, согласно оценкам специалистов оборонно-промышленных производств, применение нейросетей в радиолокации повышает вероятность распознавания дронов до 95% — об этом говорит мировой опыт. В то же время, по словам ректора ТулГУ Олега Кравченко, в России применение систем искусственного интеллекта (ИИ) в радиолокации — это «практически чистое поле», хотя само направление невероятно актуальное.

Как говорит в беседе с «Известиями» советник по экономике и социологии РАЕН, эксперт в области цифровых технологий и IT-менеджмента Антон Баланов, сегодня рост популярности и доступности БПЛА, в том числе малых размеров, создает новые риски безопасности — от нарушения конфиденциальности до террористических атак. В связи с этим вопросы защиты от несанкционированного проникновения дронов критически важных объектов, мест проведения массовых мероприятий и воздушного пространства в целом стоят весьма остро.

— Особенно опасны малые дроны, которое могут быть использованы для шпионажа, доставки контрабанды и проведения различных атак, что требует надежных методов их обнаружения и нейтрализации, — дополняет специалист по внедрению ИИ и основатель компании New Level AI Анна Дудник.

Антон Баланов поясняет, что малые дроны весят менее 20 кг и сложнее обнаруживаются существующими системами в силу небольшого размера, высокой маневренности и способности летать на низких высотах — именно поэтому специалисты ТулГУ хотят сделать акцент на их выявлении. Между тем сегодня в мире применяются различные технологии выявления дронов, у каждой из которых есть как свои плюсы, так и свои минусы.

В частности, радиолокационные системы эффективно выявляют крупные БПЛА, но испытывают сложности с определением малоразмерных аппаратов. В свою очередь, акустические системы способны обнаруживать беспилотники по характерным звукам, но дальность и точность их работы имеют свои ограничения.

Для визуального выявления БПЛА также применяются оптические и тепловизионные системы, однако им необходима прямая видимость. Как отмечает Анна Дудник, все эти методы часто сочетаются для повышения точности, но комбинированные решения отличает повышенная цена. Выходом как раз и могли бы стать технологии на основе искусственного интеллекта.

— Нейросети способны значительно повысить эффективность обнаружения дронов, анализируя большие объемы данных и выявляя паттерны, которые сложно обнаружить традиционными методами, — объясняет эксперт. — Улучшенная обработка радиолокационных сигналов позволит точнее идентифицировать малые дроны и снизить вероятность ложных срабатываний.

Сегодня нейросети способны анализировать большие объемы данных с различных акустических датчиков, радаров и камер, а затем на основании этой информации выявлять классические признаки БПЛА, говорит Антон Баланов. Технологии на основе ИИ позволяют автоматизировать процесс распознавания дронов всех типов в режиме реального времени и могут интегрироваться с системами противодействия.

— В мире уже существуют разработки, использующие нейросети для обнаружения дронов, — говорит в беседе с «Известиями» Анна Дудник. — Такие решения на основе ИИ внедряются в США, Европе и Китае для защиты аэропортов, промышленных объектов и военных баз. Это подтверждает их эффективность и востребованность.

В качестве примеров подобных разработок Антон Баланов приводит австралийскую систему DroneShield, сочетающую радары, камеры и акустические датчики с ИИ-алгоритмами, британское радиолокационное решение AUDS с возможностью автоматического обнаружения и классификации БПЛА, а также систему Drone Dome из Израиля — комплексное решение с использованием ИИ для выявления и нейтрализации дронов.

В свою очередь, основатель российско-китайской транспортной компании RusTransChina Александр Стрельников отмечает, что технологии обработки радиолокационных сигналов при помощи нейросетей также активно развивают в КНР. В частности, исследователи из Китайской академии наук (CAS) разработали метод обнаружения и классификации целей с использованием ИИ, который может эффективно идентифицировать различные типы целей, включая самолеты, ракеты и корабли.

— Ученые из Университета Цинхуа работают над технологией на основе ИИ для улучшения разрешения радиолокационных изображений, что позволяет более точно идентифицировать объекты, — рассказывает эксперт. — Кроме того, в создании радиолокационных приложений с нейросетями участвует и технологический гигант Huawei: в компании фокусируются на применении ИИ для улучшения точности обнаружения и слежения за целями.

Технология обработки радиолокационных сигналов с использованием нейросетей является передовой областью исследований, которая активно развивается в самых разных странах мира, отмечает Александр Стрельников. При этом, по мнению Анны Дудник, перспективы использования ИИ для выявления дронов выглядят очень многообещающими, как и работа в этом плане специалистов Тульского государственного университета.

— Применение нейросетей и алгоритмов машинного обучения может значительно повысить точность и скорость обнаружения БПЛА, а также снизить количество ложных тревог, — говорит собеседница «Известий».

Антон Баланов дополняет, что нейронные сети уже сегодня демонстрируют высокую эффективность в анализе многопрофильных данных для обнаружения БПЛА, а интеграция ИИ-алгоритмов с различными сенсорами позволяет создавать адаптивные системы противодействия дронам.

При этом с учетом быстрого развития технологий ИИ можно ожидать, что в ближайшие годы такие системы станут стандартом для защиты как гражданских, так и военных объектов, заключает Анна Дудник.


Разделы, к которым прикреплен документ:
Новости
Оборудование
Проекты
Организации
Тематич. разделы / Беспилотные технологии
Тематич. разделы / ДДЗ
Страны и регионы / Россия
 
Комментарии (0) Для того, чтобы оставить комментарий Вам необходимо авторизоваться или зарегистрироваться




ОБСУДИТЬ В ФОРУМЕ
Оставлено сообщений: 0


Источник: https://iz.ru/1706243/dmitrii-bulgakov/poimat-na-letu-neiroseti-v-rossii-nauchat-obnaruzhivat-bespilotniki 19:47:30 05.06 2024   

Версия для печати  
    Анонсы партнеров

    Наши предложения
  Новости Gisa.ru в Телеграм
  Реклама на сайте
  Зарегистрироваться и получать новости по e-mail
  Конференции ГИС-Ассоциации
  Журнал "Управление развитием территории"
  Контакты

Портал Gisa.ru использует файлы cookie для повышения удобства пользователей и обеспечения работоспособности сайта и сервисов. Оставаясь на сайте Gisa.ru вы подтверждаете свое согласие на использование файлов cookie. Если вы не хотите использовать файлы cookie, то можете изменить настройки браузера. Пользовательское соглашение. Политика конфиденциальности.
© ГИС-Ассоциация. 2002-2022 гг.
Time: 0.019652843475342 sec, Question: 72