Каталог Данных Каталог Организаций Каталог Оборудования Каталог Программного Обеспечения Написать письмо Наши координаты Главная страница
RSS Реклама Карта сайта Архив новостей Форумы Опросы 
Здравствуйте! Ваш уровень доступа: Гостевой
Навигатор: Новости/
 
Rus/Eng
Поиск по сайту    
 ГИС-Ассоциация
 Аналитика и обзоры
 Нормы и право
 Конкурсы
 Дискуссии
 Наши авторы
 Публикации
 Календарь
 Биржа труда
 Словарь терминов
Проект поддерживают  


Авторизация    
Логин
Пароль

Забыли пароль?
Проблемы с авторизацией?
Зарегистрироваться




width=1 Rambler_Top100

наша статистика
статистика по mail.ru
статистика по rambler.ru

Реклама на сайте
Новостные ленты

Решение для сельскохозяйственного спутникового мониторинга в условиях частой облачности

Как сообщает agroxxi.ru, со ссылкой на Beijing Normal University, дистанционное зондирование играет важную роль в мониторинге сельскохозяйственных ландшафтов, однако современные спутниковые датчики часто сталкиваются с трудностями при поиске компромисса между пространственным и временным разрешением. Изображения с высоким пространственным разрешением, хотя и детализированные, часто ограничены редкими захватами и помехами облаков, что снижает их полезность в быстро меняющихся условиях. И наоборот, изображения с лучшим временным разрешением не имеют необходимой пространственной детализации для точного анализа. Эти проблемы подчеркивают необходимость в передовых методах синтеза технологий, которые могут лучше подходить для сельскохозяйственных нужд.

Достижения в области спутниковых и сенсорных технологий значительно улучшили способность наблюдать за поверхностью Земли с высоким пространственным разрешением, предоставляя множество изображений с высоким пространственным разрешением, которые играют все более важную роль в мониторинге природных ресурсов, наземной среды, сельского хозяйства, лесного хозяйства и океанов.

В настоящее время эти изображения HSR стали основными источниками данных для сельскохозяйственных приложений, поскольку их HSR приносит пользу детальному наблюдению за распределением типов культур и состоянием роста культур.

С другой стороны, поскольку большинство спутниковых датчиков HSR разработаны с учетом компромиссов между пространственным и временным разрешением в условиях технических и бюджетных ограничений, эти изображения HSR обычно имеют более низкое временное разрешение, что серьезно подрывает их способность отслеживать быстрые изменения в росте культур и реагировать на естественные и антропогенные сельскохозяйственные события своевременно, требуя идеального периода наблюдения не более 1 недели.

Эта проблема также существует со спутниками серии Gaofen в программе Китайской системы наблюдения за Землей с высоким разрешением. Например, спутники Gaofen-1/6 оснащены 2-метровой PAN (панхроматической), 8-метровой PMC (панхроматической многоканальной) и 16-метровой широкоугольной камерой среднего разрешения, но период повторного обзора составляет 41 день. К счастью, некоторые спутниковые датчики обеспечивают получение изображений среднего пространственного разрешения с пространственным разрешением от 10 до 20 м и периодом повторного обзора 5 дней, что может компенсировать этот недостаток, если изображения HSR можно объединить с такими изображениями среднего пространственного разрешения с использованием недавно разработанных методов пространственно-временного слияния (STF).

Группа специалистов из Государственной ключевой лаборатории дистанционного зондирования при Пекинском педагогическом университете в сотрудничестве с другими учреждениями разработала StarFusion — новый метод пространственно-временного слияния.

Опубликованное в журнале Journal of Remote Sensing исследование объединяет методы глубокого обучения и традиционной регрессии для устранения ограничений текущих методов слияния. StarFusion эффективно объединяет данные высокого разрешения Gaofen-1 с данными среднего разрешения Sentinel-2, что приводит к значительному улучшению изображений для сельскохозяйственного мониторинга.

StarFusion представляет собой инновационный подход к пространственно-временному слиянию изображений, сочетающий в себе сильные стороны глубокого обучения и традиционных регрессионных моделей. Благодаря интеграции генеративно-состязательной сети сверхвысокого разрешения (SRGAN) с моделью частичной регрессии наименьших квадратов (PLSR), StarFusion достигает высокой точности слияния, сохраняя мелкие пространственные детали.

Метод эффективно решает такие проблемы, как пространственная неоднородность и ограниченная доступность изображений без облачности, что делает его весьма практичным для реальных сельскохозяйственных приложений.

Обширные испытания на различных сельскохозяйственных участках показали, что StarFusion превосходит существующие методы, особенно в сохранении пространственной детализации и улучшении временного разрешения. Его способность работать с минимальными данными без облаков выделяет его, предоставляя надежное решение для мониторинга урожая в регионах, страдающих от частой облачности.

«StarFusion представляет собой ценную попытку в области технологии дистанционного зондирования для сельского хозяйства. Его способность генерировать высококачественные изображения с улучшенным временным разрешением значительно улучшит точное земледелие и мониторинг окружающей среды», - сказал профессор Цзинь Чен, ведущий автор исследования.

StarFusion предлагает значительные преимущества для цифрового сельского хозяйства, предоставляя изображения высокого разрешения, необходимые для детального мониторинга урожая, прогнозирования урожайности и оценки стихийных бедствий. Его способность создавать точные изображения, несмотря на облачность и ограниченную доступность данных, делает его особенно ценным для управления сельским хозяйством в регионах со сложными погодными условиями. Ожидается, что по мере развития этой технологии StarFusion сыграет решающую роль в повышении производительности и устойчивости сельского хозяйства.


Разделы, к которым прикреплен документ:
Страны и регионы / Др. страны
Тематич. разделы / ДДЗ
Тематич. разделы / Природопользование / Сельское хозяйство
Организации
Оборудование
Новости
 
Комментарии (0) Для того, чтобы оставить комментарий Вам необходимо авторизоваться или зарегистрироваться




ОБСУДИТЬ В ФОРУМЕ
Оставлено сообщений: 0


Источник: https://www.agroxxi.ru/selhoztehnika/novosti/naideno-reshenie-dlja-selskohozjaistvennogo-sputnikovogo-monitoringa-v-uslovijah-chastoi-oblachnosti.html?utm_source=yxnews&utm_medium=desktop&utm_referrer=https%3A%2F%2Fdzen.ru%2Fnews%2Fsearch%3Ftext%3D 20:03:34 16.08 2024   

Версия для печати  
    Анонсы партнеров

    Наши предложения
  Новости Gisa.ru в Телеграм
  Реклама на сайте
  Зарегистрироваться и получать новости по e-mail
  Конференции ГИС-Ассоциации
  Журнал "Управление развитием территории"
  Контакты

Портал Gisa.ru использует файлы cookie для повышения удобства пользователей и обеспечения работоспособности сайта и сервисов. Оставаясь на сайте Gisa.ru вы подтверждаете свое согласие на использование файлов cookie. Если вы не хотите использовать файлы cookie, то можете изменить настройки браузера. Пользовательское соглашение. Политика конфиденциальности.
© ГИС-Ассоциация. 2002-2022 гг.
Time: 0.019696950912476 sec, Question: 72